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Why Probabilistic Robotics?
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 autonomous mobile robots need to accommodate the 
uncertainty that exists in the physical world

 sources of uncertainty
 environment
 sensors
 actuation
 software
 algorithmic

 probabilistic robotics attempts to represent uncertainty using 
the calculus of probability theory
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Pr(A) denotes probability that proposition A is true.







Axioms of Probability Theory
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A Closer Look at Axiom 3
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Using the Axioms
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Discrete Random Variables

 X denotes a random variable.

 X can take on a countable number of values in {x1, x2, 
…, xn}.

 P(X=xi ), or P(xi ), is the probability that the random 
variable X takes on value xi. 

 P( ∙ ) is called probability mass function.



Discrete Random Variables
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 fair coin

 fair dice

P(X=heads) = P(X=tails) = 1/2

P(X=1) = P(X=2) = P(X=3) = P(X=4) = P(X=5) = P(X=6) = 1/6



Discrete Random Variables
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 sum of two fair dice

P(X=2) (1,1) 1/36
P(X=3) (1,2), (2,3) 2/36
P(X=4) (1,3), (2,2), (3,1) 3/36
P(X=5) (1,4), (2,3), (3,2), (4,1) 4/36
P(X=6) (1,5), (2,4), (3,3), (4,2), (5,1) 5/36
P(X=7) (1,6), (2,5), (3,4), (4,3), (5,2), (6, 1) 6/36
P(X=8) (2, 6), (3, 5), (4,4), (5,3), (6, 2) 5/36
P(X=9) (3, 6), (4, 5), (5, 4), (6, 3) 4/36
P(X=10) (4, 6), (5, 5), (6, 4) 3/36
P(X=11) (5, 6), (6, 5) 2/36
P(X=12) (6, 6) 1/36



Discrete Random Variables
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 plotting the frequency of each possible value yields the 
histogram
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Continuous Random Variables

 X takes on values in the continuum.

 p(X=x), or p(x), is a probability density function.

 E.g.
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Continuous Random Variables

 unlike probabilities and probability mass functions, a 
probability density function can take on values greater than 1
 e.g., uniform distribution over the range [0, 0.1]

 however, it is the case that



Continuous Random Variables
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 normal or Gaussian distribution in 1D
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Continuous Random Variables
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 1D normal, or Gaussian, distribution
 mean
 standard deviation
 variance
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Continuous Random Variables
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 2D normal, or Gaussian, distribution
 mean
 covariance matrix  

)()(
2
1 1

2det
1)(




 




xx T

exp





Continuous Random Variables
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 in 2D
 isotropic
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Continuous Random Variables
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 in 2D
 anisotropic
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Continuous Random Variables
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 in 2D
 anisotropic
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Continuous Random Variables
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 in 2D
 anisotropic
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Covariance matrices
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 the covariance matrix is always symmetric and positive semi-
definite

 positive semi-definite:

 positive semi-definiteness guarantees that the eigenvalues of 
are all greater than or equal to 

for all 
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>> [v, d] = eig([1 0; 0 4])

v =

1     0
0     1

d =

1     0
0     4
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>> [v, d] = eig([2.5 1.5; 1.5 2.5])

v =

-0.7071    0.7071
0.7071    0.7071

d =

1     0
0     4
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Joint Probability

 the joint probability distribution of two random 
variables

P(X=x and Y=y) = P(x,y)

describes the probability of the event that X has the 
value x and Y has the value y

 If X and Y are independent then 
P(x,y) = P(x) P(y)



Joint Probability
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 the joint probability distribution of two random variables

P(X=x and Y=y) = P(x,y)

describes the probability of the event that X has the value x
and Y has the value y

 example: two fair dice

P(X=even and Y=even) = 9/36
P(X=1 and Y=not 1) = 5/36



Joint Probability
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 example: insurance policy deductibles

$0 $100 $200

$100 0.20 0.10 0.20

$250 0.05 0.15 0.30

home

automobile

x

y



Joint Probability and Independence
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 X and Y are said to be independent if

P(x,y) = P(x) P(y)

for all possible values of x and y

 example: two fair dice

P(X=even and Y=even) = (1/2) (1/2)
P(X=1 and Y=not 1) = (1/6) (5/6)

 are X and Y independent in the insurance deductible example?



Marginal Probabilities
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 the marginal probability distribution of X

describes the probability of the event that X has the value x

 similarly, the marginal probability distribution of Y

describes the probability of the event that Y has the value y
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Joint Probability
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 example: insurance policy deductibles

$0 $100 $200

$100 0.20 0.10 0.20

$250 0.05 0.15 0.30

home

automobile
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y



Conditional Probability
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 the conditional probability P(x | y) = P(X=x | Y=y) is the 
probability of P(X=x) if Y=y is known to be true
 “conditional probability of x given y”
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Conditional Probability
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Conditional Probability
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 “information changes probabilities”
 example:
 roll a fair die; what is the probability that the number is a 3?

 what is the probability that the number is a 3 if someone tells you 
that the number is odd? is even?



Conditional Probability
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 “information changes probabilities” 
 example:
 pick a playing card from a standard deck; what is the probability that 

it is the ace of hearts?

 what is the probability that it is the ace of hearts if someone tells 
you that it is an ace? that is a heart? that it is a king?



Conditional Probability
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 if X and Y are independent then 
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Bayes Formula

evidence
prior likelihood
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Bayes Rule 
with Background Knowledge
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Back to Kinematics
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Probabilistic Robotics
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 we seek the conditional density

 what is the density of the state

given the motion command

performed at
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Probabilistic Robotics
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Velocity Motion Model
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 assumes the robot can be controlled through two velocities
 translational velocity
 rotational velocity

 our motion command, or control vector, is

 positive values correspond to forward translation and 
counterclockwise rotation
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Velocity Motion Model

2/12/201839



Velocity Motion Model
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 center of circle

where



Velocity Motion Model
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